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Abstract—We study privacy guarantees in the framework of
pointwise maximal leakage (PML) that satisfy two requirements:
they are robust under post-processing and upper bound the
failure probability, i.e., the probability that the information
leakage exceeds a given threshold. We first examine two candidate
definitions inspired by (approximate) differential privacy and
show that neither one satisfies both requirements simultaneously.
We then introduce notion of the PML envelope, which quantifies
the largest amount of information leakage about a secret after
arbitrary post-processing of a mechanism’s output. By construc-
tion, the PML envelope satisfies both requirements. We establish
basic structural properties of the envelope, including continuity,
and derive general upper and lower bounds. We further analyze
the envelope for two widely used privacy mechanisms: the PML-
extremal mechanisms in the high-privacy regime and randomized
response. Overall, this work establishes the PML envelope as a
natural and operationally meaningful definition for providing pri-
vacy guarantees that are preserved under arbitrary downstream
transformations.

I. INTRODUCTION

The introduction of differential privacy (DP) [1] marked
a major advance in privacy-preserving technologies. Rather
than focusing on defenses against specific privacy attacks, such
as re-identification or attribute disclosure, DP frames privacy
as an inherent property of a data-processing system, one that
can be quantified through analytical arguments. Central to this
perspective is the concept of privacy loss [2], defined as

Lx,x′(Y ) := log
PY |X=x(Y )

PY |X=x′(Y )
,

where x and x′ denote two possible values of the sensitive
input (the secret) and PY |X is the mechanism that produces
the released information Y . The privacy loss random variable
captures how much evidence an observation Y provides for
distinguishing between x and x′.

The original formulation of DP, known as ε-DP, imposes a
uniform upper bound on the privacy loss by a constant ε > 0
across all relevant pairs of inputs, that is, Lx,x′(Y ) ≤ ε [1].
This strong guarantee often requires adding noise with Laplace
or geometric distributions. While these mechanisms provide
effective privacy protection, Gaussian noise is often more
appealing from a statistical standpoint. The faster tail decay
of the Gaussian distribution typically translates into improved
utility, and properties such as closedness under convolution
simplify the theoretical analysis (since the sum of Gaussians
remains Gaussian). These properties motivated the search for
relaxations of ε-DP that allow the use of Gaussian noise.

A natural way to relax ε-DP is to allow the privacy loss to
exceed ε with a small probability. This idea led to the notion
of probabilistic DP [3], which requires

P{Lx,x′(Y ) > ε} ≤ δ
for some δ ∈ (0, 1). Despite its intuitive appeal, this definition
did not gain widespread use due to a fundamental limitation:
probabilistic DP is not closed under post-processing. That
is, an adversary may apply a function to the output of a
mechanism satisfying probabilistic DP (without access to the
secret) to produce a result that no longer satisfies the original
guarantee. Closedness under post-processing is often treated as
an axiom for privacy definitions and is motivated by the data-
processing inequality in information theory [4]. Intuitively,
more processing cannot increase the information available
about the secret, and therefore should preserve privacy guar-
antees. As a result, probabilistic DP was largely set aside in
favor of approximate differential privacy (ADP), also known
as (ε, δ)-DP. A mechanism satisfies (ε, δ)-DP if

PY |X=x(A) ≤ eεPY |X=x′(A) + δ, (1)

for all (measurable) sets A. This definition is closed under
post-processing, accommodates the use of Gaussian noise, and
also enables advanced composition [5].

The parameter δ ∈ (0, 1) in approximate differential privacy
is often informally interpreted as restricting the failure prob-
ability at level ε, i.e., P{Lx,x′(Y ) > ε}. This interpretation
is, however, somewhat loose. One can show that δ merely
provides a lower bound on this probability, and in fact, [6]
constructed an example in which P{Lx,x′(Y ) > ε} was much
larger than the δ in ADP. Instead, the parameter δ in ADP
upper bounds the failure probability at larger thresholds, such
as 2ε or, more generally, kε (see (4) for the precise statement).
Note that while a constant-factor increase in δ is generally
harmless (since δ is chosen to be cryptographically small), a
constant-factor increase in ε exponentially weakens the privacy
guarantee as (1) depends on eε.

Interestingly, the difficulties associated with defining relaxed
privacy guarantees based on a probability of failure are not
unique to DP, but have been observed in a different framework
based on a privacy measure called pointwise maximal leakage
(PML) [7]. PML was recently introduced as a measure with
several attractive properties. In particular, privacy guarantees
based on PML allow the release of population-level infor-
mation while protecting more nuanced, instance-dependent



features of the data [8]. The framework is built around a central
random quantity, the information leakage random variable,
which can be expressed as

ℓ(X → Y ) = log max
x

PX|Y (x | Y )

PX(x)
,

where PX|Y is the posterior distribution of X given Y .
Different notions of privacy correspond to placing different
restrictions on this quantity. In particular, the guarantee known
as ε-PML imposes a uniform upper bound on the information
leakage, in direct analogy with ε-DP.

In [7], the authors also proposed a relaxation of ε-PML
based on bounding the failure probability at level ε, that is

P{ℓ(X → Y ) > ε}.

However, it turns out that much like probabilistic DP, this
relaxation is not closed under post-processing. To address this
issue, the authors introduced an alternative privacy guarantee
based on bounding the information leaked to events (i.e.,
subsets of the output space). This notion, however, is not
directly comparable to the failure probability: depending on
the underlying distributions, either quantity may dominate the
other [7].

In this paper, we undertake the task of defining a relaxation
of ε-PML that satisfies two desirable properties:

(i) the slack parameter δ should provide an upper bound
on the failure probability at level ε, and

(ii) the resulting privacy guarantee should be closed under
post-processing.

As the preceding discussion illustrates, existing relaxations
typically satisfy one of these properties, and achieving both
properties simultaneously appears to be non-trivial.

A. Contributions

We first examine two relaxations of ε-PML inspired by
ADP. Although ADP itself does not satisfy property (i), this
investigation is nevertheless informative, as it reveals the types
of PML-based definitions that arise when one follows the ADP
design philosophy. Of the two candidate definitions, the first
again fails to be post-processing safe (Theorem 1). The second
is post-processing safe, but does not admit a clear or consistent
relationship with the failure probability. Consequently, neither
definition satisfies both properties (i) and (ii).

Our main contribution in this work is the introduction
of the concept of the PML envelope. The key idea is to
evaluate the failure probability after all possible downstream
transformations, instead of just at the original output Y ; in
other words, to “close” the failure probability. First, we define

δc(ε) := sup
Z

P{ℓ(X → Z) > ε}, ε > 0,

where the supremum is taken over all deterministic or random-
ized functions Z of Y . This quantity represents the largest
probability with which the information leakage may exceed

ε after arbitrary post-processing. The PML envelope is then
defined as

εc(δ) := inf{ε > 0 : δc(ε) ≤ δ}, δ ∈ (0, 1),

that is, the smallest leakage threshold ε for which the closed
failure probability is at most δ. By definition, the PML
envelope satisfies both properties (i) and (ii) above. We provide
equivalent characterizations of εc(δ) in terms of the cumula-
tive distribution function (CDF) of the information leakage
random variable ℓ(X → Y ) (Theorem 2). We also establish
basic properties of εc, including monotonicity and continuity
(Corollary 1).

In general, computing the PML envelope exactly may be
difficult. For this reason, we derive general upper and lower
bounds on εc. The upper bound (Theorem 3) is expressed in
terms of the multiplicative Bayes capacity [9] (also known
as maximal leakage [10]), which is a well-studied quantity
in the quantitative information flow literature [11]. Lower
bounds are obtained by restricting the class of admissible
post-processings. In particular, we derive a lower bound based
on binary post-processings, which is simple and efficiently
computable. This lower bound coincides with the event-based
privacy guarantee introduced in [7]; we discuss this connection
in detail in Appendix A.

Finally, we illustrate how the PML envelope can be com-
puted and bounded by analyzing two canonical mechanisms.
The first is the class of PML-extremal mechanisms in the
high-privacy regime [12]. These mechanisms are the utility-
optimal solutions to a broad class of optimization problems
under the ε-PML constraint with sufficiently small ε > 0.
For these mechanisms, we characterize the envelope exactly
(Theorem 4) and show that εc(δ) = ε for all δ ∈ (0, 1).

The second is the randomized response mechanism [13], a
standard and widely used tool for guaranteeing local differen-
tial privacy [14]. Randomized response is a natural benchmark
due to its simplicity, in particular, its symmetric structure, as
well as its widespread use. For this mechanism, we derive
upper and lower bounds on the PML envelope. Comparing
these bounds to the corresponding ADP guarantees of random-
ized response shows that the two frameworks can behave quite
differently, with no consistent relationship in general. This is
not surprising because in the PML envelope, δ represents the
failure probability, whereas in ADP it appears as an additive
slack parameter.

II. BACKGROUND

A. Notation

Uppercase letters denote random variables, lowercase letters
denote their realizations, and calligraphic letters denote sets.
All sets are assumed to be finite. We use X to denote a random
variable containing sensitive information, also referred to as
the secret. Its probability distribution is denoted by PX , and its
domain by X . A privacy mechanism (or simply, a mechanism)
is specified by a conditional probability distribution PY |X ,
which takes X as input and produces an output Y with domain



Y and (marginal) distribution PY . The joint distribution of
(X,Y ) is denoted by PXY .

Random variables X , Y , and Z are said to form a Markov
chain X − Y − Z if X and Z are conditionally independent
given Y , that is, PXZ|Y = PX|Y × PZ|Y . We write PZ|X =
PZ|Y ◦ PY |X to denote marginalization, meaning that

PZ|X=x(z) =
∑
y∈Y

PZ|Y=y(z)PY |X=x(y), x ∈ X , z ∈ Z.

For a set E , 1E denotes its indicator function. For a positive
integer k, we write [k] = {1, . . . , k}.

B. Differential Privacy

Differential privacy (DP) was introduced as a framework for
releasing statistics about databases while protecting the privacy
of individual entries [1, 2]. Informally, the original definition
requires that an adversary should not be able to distinguish
between neighboring datasets, i.e., databases that differ in a
single record, based on the statistics released from each.

Later, DP was extended to decentralized settings, where data
is perturbed before collection. This variant, known as local
differential privacy (LDP) [15, 16], eliminates the need for a
trusted data curator, as privacy is enforced at the data source.
In this work, we adopt the local model for all DP definitions.
This choice is made without loss of generality, since switching
between the two models amounts to redefining what it means
for two inputs to be “neighbors.” By working in the local
model, we abstract away the structure of the secret and instead
focus on our main objective: to analyze how various definitions
behave under post-processing.

Given x, x′ ∈ X , let

Lx,x′(Y ) := log
PY |X=x(Y )

PY |X=x′(Y )
,

denote the privacy loss random variable of DP [2]. The
simplest DP definition imposes a uniform bound on the privacy
loss.

Definition 1 (Pure DP [1]). Let ε > 0. A privacy mechanism
PY |X is said to satisfy ε-DP if Lx,x′(y) ≤ ε for all x, x′ ∈ X
and all y ∈ Y .

A standard relaxation of pure DP, known as approximate
DP (ADP) [17], allows an additive slack δ ∈ (0, 1) in the
event-wise comparison of the conditional distributions.

Definition 2 (Approximate DP [2]). Let ε > 0 and δ ∈ (0, 1).
A privacy mechanism PY |X is said to satisfy (ε, δ)-DP if for
all x, x′ ∈ X and all sets E ⊂ Y we have

PY |X=x(E) ≤ eεPY |X=x′(E) + δ. (2)

The common interpretation of (ε, δ)-DP is that it allows the
privacy guarantees of ε-DP to fail with probability δ. However,
as pointed out in [6], this interpretation is misleading: the
parameter δ is, in fact, a lower bound on the worst-case failure
probability. To demonstrate this, we find the smallest δ that

satisfies (2) for a fixed ε. This function, called the privacy
profile [18] and denoted by δ∗(ε, PY |X), can be expressed as

δ∗(ε, PY |X) = max
x,x′∈X

max
E⊂Y

(
PY |X=x(E)− eεPY |X=x′(E)

)
.

Then, PY |X satisfies (ε, δ)-DP for all δ∗(ε) ≤ δ < 1. It is not
difficult to see that δ∗ can also be expressed in the following
more intuitive form [19, Lemma 2.8]:

δ∗(ε, PY |X)

= max
x,x′

EY∼PY |X=x

[
max

{
0, 1− exp(ε)

exp(Lx,x′(Y ))

}]
(3)

= max
x,x′

EY∼PY |X=x

[
1{Lx,x′>ε}(Y )

(
1− exp(ε)

exp(Lx,x′(Y ))

)]
.

Intuitively, the term

1− exp(ε)

exp(Lx,x′(y))
,

is a penalty applied to outcomes y with privacy loss larger
than ε. The greater the deviation of privacy loss from ε,
the larger this penalty becomes, reflecting the idea that such
outcomes contribute more significantly to the overall privacy
risk. Observe that 0 ≤ 1 − exp(ε)

exp(Lx,x′ (y))
≤ 1 on the set

{Lx,x′ > ε}, so we have

δ∗(ε, PY |X) ≤ max
x,x′∈X

EY∼PY |X=x

[
1{Lx,x′>ε}(Y )

]
= max

x,x′∈X
PY |X=x {Lx,x′(Y ) > ε} .

The quantity maxx,x′ PY |X=x {Lx,x′(Y ) > ε} represents the
worst-case failure probability of DP, that is, the (maximum)
probability that the privacy loss exceeds ε. Hence, the above
derivation shows that the value of δ in ADP merely lower
bounds this quantity. It is nevertheless true that (ε, δ)-DP
implies the weaker tail bound

PY |X=x

{
Lx,x′(Y ) > 2ε

}
≤ δ

1− e−ε ,

for all x, x′ [20, Lemma 3.3] (see also [21]). More generally,
(ε, δ)-DP implies

max
x,x′

PY |X=x

{
Lx,x′(Y ) > kε

}
≤ δ

1− e−(k−1)ε , (4)

for all integers k ≥ 2. While some recent works have taken
care to be more precise in their description of ADP, for
instance, by stating that ADP restricts the failure probability
up to a scaling of the parameters, the misconception remains
widespread, especially in more applied contexts where the
focus is not on the theoretical nuances.

The above discussion naturally raises the question of
whether we could define a DP variant by explicitly upper
bounding the failure probability. Such a definition was, in
fact, proposed by Machanavajjhala et al. [3] and is known
as probabilistic DP.



Definition 3 (Probabilistic DP [3]). Let ε > 0 and
δ ∈ (0, 1). A privacy mechanism PY |X is said to sat-
isfy (ε, δ)-probabilistic DP if for all x, x′ ∈ X we have
PY |X=x {Lx,x′(Y ) > ε} ≤ δ.

While probabilistic DP is arguably more intuitive than
ADP, it is rarely used in practice. This is primarily because
probabilistic DP may not be preserved after post-processing [6,
22], in contrast to ADP, which is post-processing safe [2].
This property has contributed to ADP becoming the de facto
standard in the literature. To illustrate what can go wrong for
probabilistic DP, let us recall the following example from [6].

Example 1. Consider a privacy mechanism PY |X with a binary
input space X = {0, 1} and a quaternary output space Y = [4].
Given fixed ε > 0 and δ ∈ (0, 1), define

PY |X=0(y) =


δ if y = 1,
eε

1+eε (1− δ) if y = 2,
1

1+eε (1− δ) if y = 3,

0 if y = 4,

PY |X=1(y) =


0 if y = 1,

1
1+eε (1− δ) if y = 2,
eε

1+eε (1− δ) if y = 3,

δ if y = 4.

We have the following values for the privacy loss:

L0,1(1) = L1,0(4) =∞, L0,1(2) = L1,0(3) = ε,

L0,1(3) = L1,0(2) = −ε, L0,1(4) = L1,0(1) = −∞.

When X = 0, the “bad” set on which the privacy loss
exceeds ε is {1} and when X = 1, the bad set is {4}.
Since PY |X=0{1} = PY |X=1{4} = δ, the mechanism satisfies
(ε, δ)-probabilistic DP. Now, let Z = h(Y ), where h is

h(y) =

{
⊥ if y ∈ {1, 2},
y otherwise.

This transformation collapses part of the output space into a
new symbol ⊥, and merges a “bad” output (y = 1 for X = 0)
with a “good” one (y = 2). The mechanism PZ|X = PZ|Y ◦
PY |X from X to Z is

PZ|X=0(z) =


δ + eε

1+eε (1− δ) if z = ⊥,
1

1+eε (1− δ) if z = 3,

0 if z = 4,

PZ|X=1(z) =


1

1+eε (1− δ) if z = ⊥,
eε

1+eε (1− δ) if z = 3,

δ if z = 4.

Observe that

PZ|X=0(⊥) = δ +
eε

1 + eε
(1− δ)

> eε · 1

1 + eε
(1− δ)

= eε · PZ|X=1(⊥),

so PZ|X does not satisfy (ε, δ)-probabilistic DP.

In the following section, we discuss similar challenges
with post-processing in the framework of pointwise maximal
leakage.

C. Pointwise Maximal Leakage

Pointwise maximal leakage (PML) [7] is a recent notion of
privacy defined using concepts from quantitative information
flow [11]. PML quantifies the inference risk posed by a broad
class of adversaries. Its threat model can be described as
follows: consider an adversary who seeks to maximize a non-
negative gain function g by producing a guess W of the
private variable X . The gain function encodes the adversary’s
objective and can capture a wide range of privacy attacks,
including membership and attribute inference [7]. For an
output y ∈ Y , PML measures information leakage as the ratio
between the adversary’s expected gain after observing y and
the expected gain before observing y. Then, to obtain a robust
and attack-agnostic notion of leakage, this ratio is maximized
over all nonnegative gain functions. Formalizing this idea leads
to the following definition for PML.

Definition 4 (PML [7]). Suppose X ∼ PX and let Y be
the random variable induced by the mechanism PY |X . The
pointwise maximal leakage from X to y ∈ Y is defined as

ℓPXY
(X → y) := log sup

g

sup
PW |Y

E[g(X,W ) | Y = y]

maxw′∈W E[g(X,w′)]
, (5)

where PW |Y is the conditional distribution of the adversary’s
guess W given Y . The supremum is over all and non-negative
measurable functions g.

In this work, both X and Y are assumed to be finite-valued.
Under this assumption, it was shown in [7] that PML takes
the simpler form

ℓPXY
(X → y) = logmax

x∈X

PX|Y=y(x)

PX(x)

= logmax
x∈X

PY |X=x(y)

PY (y)
,

where PX|Y denotes the posterior distribution of X given Y .
It is straightforward to see that PML satisfies the bounds

0 ≤ ℓPXY
(X → y) ≤ log

1

minx∈X PX(x)
, (6)

for all y ∈ Y .
In the information theory literature, the quantity

iPXY
(x; y) = log

PXY (x, y)

PX(x)PY (y)
, x ∈ X , y ∈ Y,

is commonly referred to as the information density of PXY .
PML can also be expressed as

ℓPXY
(X → y) = max

x∈X
iPXY

(x; y).



Note that, unlike DP, PML depends on the prior distribution
PX and is therefore a property of the joint distribution PXY .
When the joint distribution is clear from context, we omit
the subscript and write i(x; y) for information density and
ℓ(X → y) or simply ℓ(y) for PML.

The joint distribution PXY is said to satisfy ε-PML with
ε > 0 if ℓ(X → y) ≤ ε for all y ∈ Y . In [7], the authors
also introduced a relaxation of ε-PML by imposing an upper
bound on the tail of ℓ(X → Y ).1

Definition 5 (Probabilistic PML). Let ε > 0 and δ ∈ (0, 1).
The joint distribution PXY is said to satisfy (ε, δ)-probabilistic
PML if

PY {ℓ(X → Y ) > ε} ≤ δ.
Much like probabilistic LDP, probabilistic PML is not

closed under post-processing. To illustrate this, below we give
an example similar to [7, Example 7].
Example 2. Let X be uniformly distributed on X = [4].
Consider the privacy mechanism

PY |X =


0 0 0.5 0.5

0 0 0.5 0.5

0 0.2 0.4 0.4

0.2 0 0.4 0.4

 , (7)

where (PY |X)ij = PY |X=i(j). The outcomes have informa-
tion leakage

ℓPXY
(X → 1) = ℓPXY

(X → 2) = log 4,

ℓPXY
(X → 3) = ℓPXY

(X → 4) = log
10

9
.

Since PY (1) = PY (2) = 1
20 , PXY satisfies (log 10

9 , 0.1)-
probabilistic PML.

Now, let Z = h(Y ), where

h(y) =

{
1 if y ∈ {1, 3},
2 if y ∈ {2, 4},

The outcomes of Z are equiprobable and have information
leakage ℓPXZ

(X → 1) = ℓPXZ
(X → 2) = log 6

5 . Since
6
5 > 10

9 , PXZ = PZ|Y ◦ PXY does not satisfy the original
guarantee of (log 10

9 , 0.1)-probabilistic PML.
In light of Example 2, we ask: What alternative definitions

can reconcile PML-based privacy guarantees with the post-
processing requirement? We explore answers to this question
in the subsequent sections.

III. TWO CANDIDATE DEFINITIONS OF
APPROXIMATE PML

As a first step, we examine two candidate definitions of
approximate PML, inspired by ADP. In particular, we define
analogues of (3) by replacing the DP privacy loss with either
the information leakage random variable or the information
density.

1The function ℓ(X → y) is defined pointwise for each y ∈ Y .
Consequently, ℓ(X → Y ) is a random variable induced by Y .

Given ε > 0, define

ψ1(ε, PXY ) := EY∼PY

[
max

{
0, 1− exp(ε)

exp(ℓ(Y ))

}]
= EY∼PY

[
1{ℓ>ε}(Y )

(
1− exp(ε)

exp(ℓ(Y ))

)]
,

and

ψ2(ε, PXY )

:= max
x

EY∼PY |X=x

[
max

{
0, 1− exp(ε)

exp(i(x;Y ))

}]
= max

x
EY∼PY |X=x

[
1{i(x;·)>ε}(Y )

(
1− exp(ε)

exp(i(x;Y ))

)]
.

Both definitions follow the same general pattern: they assign
a penalty to outcomes where the information leakage ℓ(y) or
the information density i(x; y) exceeds the threshold ε. Note
that 0 ≤ 1− exp(ε)

exp(ℓ(y)) ≤ 1 when ℓ(y) > ε, so ψ1 lower bounds
the PML failure probability PY {ℓ(Y ) > ε}.

Despite the parallelism in their expressions, these two
definitions behave differently under post-processing: ψ1 is not
post-processing safe, whereas ψ2 is.

Theorem 1. Let ε > 0.
(i) There exist random variables X,Y, Z satisfying the

Markov chain X − Y − Z such that

ψ1(ε, PZ|Y ◦ PXY ) > ψ1(ε, PXY ).

(ii) For all random variables X,Y, Z satisfying the Markov
chain X − Y − Z we have

ψ2(ε, PZ|Y ◦ PXY ) ≤ ψ2(ε, PXY ).

Proof:
(i) It suffices to construct an example where ψ1(ε, PZ|Y ◦

PXY ) > ψ1(ε, PXY ). Recall the setup of Example 2.
Setting ε = log 10

9 , a direct calculation yields

ψ1(ε, PXY ) =
13

180
<

2

27
= ψ1(ε, PXZ).

Hence, ψ1 can increase under post-processing.
(ii) Our argument mirrors the standard proof of post-

processing for ADP. Consider the Markov chain X −
Y − Z. Fix an arbitrary x ∈ X and observe that

EZ∼PZ|X=x

[
1{i(x;·)>ε}(Z)

(
1− exp(ε)

exp(i(x;Z))

)]
=

∑
z:i(x;z)>ε

(
1− exp(ε)

exp(i(x; z))

)
PZ|X=x(z)

=
∑

z:i(x;z)>ε

PZ|X=x(z)− eε
∑

z:i(x;z)>ε

PZ(z)

= PZ|X=x{z : i(x; z) > ε} − eεPZ{z : i(x; z) > ε}.
Thus, to prove that ψ2 does not increase under post-
processing, it suffices to show that

PZ|X=x(A)− eεPZ(A) ≤ ψ2(ε, PXY ),



for all x ∈ X and arbitrary sets A ⊆ Z . Indeed, for
each set A ⊆ Z we have

PZ|X=x(A)− eεPZ(A)

=
∑
y∈Y

PZ|Y=y(A)
(
PY |X=x(y)− eεPY (y)

)
≤

∑
y: i(x;y)>ε

PZ|Y=y(A)
(
PY |X=x(y)− eεPY (y)

)
≤

∑
y: i(x;y)>ε

PY |X=x(y)− eεPY (y)

=
∑

y: i(x;y)>ε

(
1− exp(ε)

exp(i(x; y))

)
PY |X=x(y)

= EY∼PY |X=x

[
1{i(x;·)>ε}(Y )

(
1− exp(ε)

exp(i(x;Y ))

)]
≤ ψ2(ε, PXY ).

Thus, Theorem 1 establishes that ε-PML can be relaxed
with an additive parameter such that the resulting definition is
closed under post-processing. It is straightforward to see that
ψ2 can be written as

ψ2(ε, PXY ) = max
x∈X

max
E⊂Y

(
PY |X=x(E)− eεPY (E)

)
.

Although ψ2 is closed under post-processing, it does not
provide a suitable proxy for the failure probability PY {ℓ(Y ) >
ε}, since neither quantity bounds the other one in general. To
illustrate this, consider again the mechanism PY |X in (7). We
have

PY {ℓ(Y ) > log 10
9 } = PY {ℓ(Y ) > log 3} = 0.1,

while at the same time,

ψ2(log 3, PXY ) = 0.05 < 0.1 <
13

90
= ψ2

(
log 10

9 , PXY

)
.

This example shows that ψ2 is not comparable to the tail
probability PY {ℓ(Y ) > ε}. As such, in the next sections, we
take a different approach and focus on directly “closing” the
tail probability PY {ℓ(Y ) > ε}.

IV. CLOSING THE PROBABILITY OF FAILURE AND THE
PML ENVELOPE

We now turn to a natural approach to the post-processing
question, one that directly addresses the core issue of prob-
abilistic PML. Instead of defining an additive relaxation or
adjusting penalties, we examine the worst-case probability of
failure across all possible post-processing mechanisms.

Formally, given a joint distribution PXY and ε > 0, define

δc(ε) := sup
Z:X−Y−Z

P{ℓ(Z) > ε}, (8)

where the supremum is taken over all finite random variables
Z satisfying the Markov chain X − Y − Z, alternatively, all

conditional distributions PZ|Y . Observe that δc quantifies the
largest probability that PML exceeds ε under any downstream
transformation, so by definition, it is post-processing safe.

In (8), we fix ε and find the largest failure probability.
Alternatively, we could fix δ ∈ (0, 1) and find the smallest
ε that holds with probability at least 1− δ after arbitrary post-
processing. Let Z denote a (possibly randomized) function of
Y , and consider its corresponding leakage random variable
ℓ(Z). Let

CZ(t) = P{ℓ(Z) ≤ t}, t ≥ 0,

denote the cumulative distribution function (CDF) of ℓ(Z),
and for s ∈ (0, 1), define

Quant←Z (s) := inf
{
t ≥ 0 : CZ(t) ≥ s

}
.

to be the left-continuous quantile function of ℓ(Z) at level s.
Then, for δ ∈ (0, 1), we define

εZ(δ) := Quant←Z (1−δ) = inf
{
t ≥ 0 : CZ(t) ≥ 1−δ

}
, (9)

which captures the smallest threshold t such that PML is
bounded by t with probability at least 1 − δ. Observe that
the mapping s 7→ Quant←Z (s) is non-decreasing and left-
continuous. Consequently, δ 7→ εZ(δ) is non-increasing and
right-continuous. The function εZ(δ) also admits the equiva-
lent, and somewhat more explicit formulation

εZ(δ) = min
A⊂Z

PZ(A)≥1−δ

max
z∈A

ℓ(z), δ ∈ (0, 1). (10)

That is, εZ(δ) tells us how small we can make the worst-case
leakage, up to ignoring a set of probability δ. The equivalence
between (9) and (10) is proved in Lemma 2 in the Appendix B
for completeness.

We now define the PML envelope of PXY , denoted by εc,
as the supremum of εZ over all post-processings of Y , i.e.,

εc(δ) := sup
Z:X−Y−Z

εZ(δ), δ ∈ (0, 1).

In words, εc(δ) captures the tightest privacy guarantee that
survives arbitrary downstream transformations, up to a failure
probability of δ. By definition, the map δ 7→ εc(δ) is non-
increasing.

Before we characterize and compute the PML envelope,
let us first express it in an alternative form. Given a random
variable Z and s ∈ (0, 1), let

Quant→Z (s) := sup
{
t ≥ 0 : CZ(t) ≤ s

}
,

be the right-continuous quantile function of ℓ(Z) at level s.
Then, for δ ∈ (0, 1) define

ε̄Z(δ) := Quant→Z (1− δ) = sup{t ≥ 0 : CZ(t) ≤ 1− δ}
= max

A⊂Z
PZ(A)≥δ

min
z∈A

ℓ(z).

Observe that the mapping δ 7→ εZ(δ) is non-increasing and
left-continuous.

Heuristically, the difference between ε̄Z(δ) and εZ(δ) can
be understood as follows: εZ(δ) is the smallest upper bound
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Fig. 1: An example of the CDF CY (t) together with εY (δ)
and ε̄Y (δ) at δ = 0.1. Since CY is not strictly increasing,
there is a gap between εY (δ) and ε̄Y (δ).

on the worst-case PML over all the “good” sets of outputs
(i.e., sets with probability at least 1 − δ). In contrast, ε̄Z(δ)
is the largest lower bound on the worst-case PML over all
“bad” sets of outputs (i.e., sets with probability at least δ).
If CZ is strictly increasing, then εZ(δ) = ε̄Z(δ) for all δ ∈
(0, 1), since in that case the inverse of CZ is well defined and
coincides with both the left-continuous and right-continuous
quantile functions. More generally, we have ε̄Z(δ) ≥ εZ(δ)
for all δ ∈ (0, 1) and the inequality may be strict, particularly
when Z is a discrete random variable.

The difference between εZ and ε̄Z is further illustrated in
the following example.

Example 3. Recall X and Y from Example 2, and fix δ = 0.1.
The leakage random variable ℓ(Y ) takes on two distinct
values: a low leakage value of log(10/9) with probability
0.9, and a high leakage value of log(4) with probability 0.1.
For this distribution, the left-continuous quantile is εY (δ) =
log(10/9), while the right-continuous quantile is ε̄Y (δ) =
log 4. Figure 1 shows the distribution function CY of ℓ(Y ),
together with two vertical lines marking εY (δ) and ε̄Y (δ).

Below, we show that maximizing over all post-processings
of Y eliminates the gap between ε̄Z(δ) and εZ(δ). Thus, both
quantities can be used to define the PML envelope.

Theorem 2. Suppose X and Y are finite random variables.
For all δ ∈ (0, 1), we have

εc(δ) = sup
Z:X−Y−Z

εZ(δ) = sup
Z:X−Y−Z

ε̄Z(δ).

Proof: See Appendix C.
Importantly, Theorem 2 explains why probabilistic PML is

not closed under post-processing. It states that the idea of
simply ignoring a small “bad” set does not work because,
through post-processing, an adversary can increase the in-
formation leakage all the way up to the smallest value in
the bad set. To illustrate this, let us revisit Example 2. For

δ = 0.1, the good set consists of two outcomes with PML
log(10/9) and the bad set consists of two outcomes with PML
log(4). By Theorem 2, the adversary can increase the leakage
from log(10/9) all the way up to log(4). Note that by (6),
log(4) is the largest amount of information any mechanism
can leak about a uniformly distributed quaternary secret X .
As δ 7→ εc(δ) is non-increasing, it follows that εc(δ) = log(4)
for all δ ∈ (0, 0.1].

Theorem 2 can also be used to prove that the map δ 7→ εc(δ)
is continuous.

Corollary 1. Suppose X and Y are finite random variables.
The function εc is continuous on (0, 1).

In the following sections, we characterize and bound εc in
various examples.

A. Upper Bounding the PML envelope

Computing the PML envelope is, in general, a challenging
task, since it involves a maximization over all possible post-
processings of Y . This motivates us to derive bounds on the
envelope. Below, we present a general upper bound.

Theorem 3. Suppose the joint distribution PXY satisfies ε-
PML with ε > 0. Then, for and all δ ∈ (0, 1) we have

εc(δ) ≤ min

{
L(X → Y ) + log

1

δ
, ε

}
, (11)

where

L(X → Y ) = log E
[
eℓ(Y )

]
= log

∑
y∈Y

max
x∈X

PY |X=x(y),

denotes multiplicative Bayes capacity [9] or maximal leak-
age [10].

Proof: To prove the first term of the bound, fix some Z
satisfying the Markov chain X −Y −Z, and t ≥ 0. We write

SZ(t) = P{ℓ(Z) > t}
= P

{
eℓ(Z) > et

}
≤ E

[
eℓ(Z)

]
e−t (12a)

≤ E
[
eℓ(Y )

]
e−t, (12b)

where (12a) is due to Markov’s inequality and (12b) is due
to the data-processing inequality for maximal leakage [10,
Lemma 1]. Thus,

{t ≥ 0 : SZ(t) ≥ δ} ⊆
{
t ≥ 0 : E

[
eℓ(Y )

]
e−t ≥ δ

}
,

which implies that

ε̄Z(δ) = sup {t ≥ 0 : SZ(t) ≥ δ}
≤ sup

{
t ≥ 0 : E

[
eℓ(Y )

]
e−t ≥ δ

}
= L(X → Y ) + log

(1
δ

)
.

To prove the second term, we use the following four facts:



(i) PXY satisfies ε-PML if

max
y∈Y

ℓ(X → y) ≤ ε,

(ii) when Y is a finite set, there exists δ0 > 0 such that for
all 0 < δ ≤ δ0 we have

εY (δ) = ε̄Y (δ) = max
y∈Y

ℓ(X → y),

(iii) the post-processing inequality for PML [7, Lemma 1]
states that if the Markov chain X − Y − Z holds, then

max
z∈Z

ℓPXZ
(X → z) ≤ max

y∈Y
ℓPXY

(X → y).

and
(iv) ε̄Z(δ), εZ(δ), and εc(δ) are all non-increasing in δ for

all Z.
Thus, for all δ ∈ (0, 1), it holds that

εc(δ) ≤ sup
δ′∈(0,1)

εc(δ
′)

= sup
Z:X−Y−Z

sup
δ′∈(0,1)

ε̄Z(δ
′)

= sup
Z:X−Y−Z

max
z∈Z

ℓPXZ
(X → z)

≤ max
y∈Y

ℓPXY
(X → y)

≤ ε.

We make a few remarks on Theorem 3. First, when X is
a finite random variable, (6) implies that PML is uniformly
bounded for all outcomes y ∈ Y . As a consequence, regardless
of the mechanism PY |X , the joint distribution PXY satisfies ε-
PML for some finite ε. Second, observe that maximal leakage
L(X → Y ), and consequently, the first term in the bound,
depends only on the mechanism PY |X and is independent of
the prior PX .

B. Lower Bounding the PML envelope

To obtain lower bounds on εc, we may restrict attention
to specific classes of post-processings and compute the PML
δ-quantile of the resulting outputs. This can be viewed as re-
stricting the computational power of the adversary. In general,
the choice of post-processings used to derive lower bounds is
mechanism dependent (see Section V-B for an illustration).
Nevertheless, it is instructive to consider two simple and
broadly applicable instances: (i) taking Z = Y , i.e., no post-
processing, which yields ε̄Y ; and (ii) restricting attention to
binary post-processings of Y .

Let

εb(δ) := sup
Z:X−Y−Z, Z={0,1}

ε̄Z(δ), δ ∈ (0, 1), (13)

denote the binary envelope of PXY . Then, for all δ ∈ (0, 1),
we have the lower bound

εc(δ) ≥ max
{
ε̄Y (δ), εb(δ)

}
.

One may obtain sharper lower bounds by extending the
analysis to ternary, quaternary, and other higher-order k-ary

Algorithm 1 Computing εb(δ) for a joint distribution PXY

Require: PY |X , PX and δ ∈ (0, 1)
Ensure: εb(δ)

1: Compute the marginal PY

2: Initialize M ← 0
3: for all x ∈ X do
4: for all y ∈ Y do
5: sx(y)← PY |X=x(y)

PY (y)
6: end for
7: Sort Y as (y1, . . . , y|Y|) so that

sx(y1) ≥ sx(y2) ≥ · · · ≥ sx(y|Y|)

8: Find the smallest index k⋆ such that
∑k⋆

j=1 PY (yj) ≥ δ
9: p←∑k⋆−1

j=1 PY (yj)

10: ζ ← δ−p
PY (yk⋆ )

11: v ← 1
δ

(∑k⋆−1
j=1 PY |X=x(yj) + ζPY |X=x(yk⋆)

)
12: M ← max(M, v)
13: end for
14: return εb ← logM

post-processings. As we will see below, the advantage of εb
is that it is simple to calculate.

The quantity εb previously appeared in the work of Saeidian
et al. [7] (in a slightly different form) as a stand-alone privacy
definition. In contrast, here, we use εb only as a lower bound
on the PML envelope. Algorithm 1 provides a procedure for
computing εb based on the proof of [7, Thm. 3]. The main idea
underlying both this proof and Algorithm 1 is to generalize
the notion of PML from individual outcomes to events. In
particular, given an event E ⊆ Y with PY (E) > 0, and Z =
1E(Y ), we may define event-wise leakage as

ℓPXY
(X → E) := ℓPXZ

(X → 1).

Technically, this is not a new concept since event-wise leakage
is simply the PML of the affirmative outcome of an indicator
function. Nevertheless, it provides a convenient shorthand for
reasoning about post-processing. Note that extending PML
to events is natural in this context, since any binary post-
processing corresponds to selecting an event in Y and reveal-
ing whether or not the outcome Y lies in that event.

Heuristically, Algorithm 1 works as follows: For each x ∈
X , we compute the largest value of

PY |X=x(E)
PY (E)

,

over events E ⊆ Y with PY (E) = δ (with possible random-
ization at the boundary). The quantity εb is then obtained by
taking the logarithm of the maximum of this value over all
x ∈ X . Further discussion about the information leakage of
events and their connection to post-processing is provided in
Appendix A.



V. APPLICATIONS

We now calculate and bound the PML envelope in two
canonical settings. These are: the PML–extremal mechanisms
in the high-privacy regime [12] and the randomized response
mechanism [13, 14].

A. PML-extremal Mechanisms

In [12], Grosse et al. investigated the design of utility-
optimal privacy mechanisms under the ε–PML constraint for
secrets with finite alphabets. They formulated a linear program
for maximizing a broad class of convex and sublinear utility
functions, and the resulting optimal mechanisms were termed
PML–extremal mechanisms. Fix a prior distribution PX on
X = [k] with k ≥ 2. Grosse et al. [12] showed that in the
high-privacy regime, corresponding to

0 ≤ ε < log

(
1

1−minx∈X PX(x)

)
,

the optimal mechanism has the form

P ∗Y |X=i(j) =

{
1− eε

(
1− PX(i)

)
, if i = j,

eεPX(j), if i ̸= j,

where Y = X , and i, j ∈ [k]. Note that the outcomes of this
mechanism have the PML ℓ(X → j) = ε for all j ∈ [k].

Theorem 4. Let PX be a distribution on X = [k], and fix
0 ≤ ε < − log (1−minx∈X PX(x)). Let P ∗Y |X denote the
PML-extremal mechanism. Then, for all δ ∈ (0, 1), the PML
envelope is εc(δ) = ε.

Proof: By Theorem 3, any mechanism satisfying ε-PML
has εc(δ) ≤ ε for all δ ∈ (0, 1). We argue that P ∗Y |X achieves
this upper bound.

Let A ⊂ Y be an arbitrary event with probability PY (A) ≥
δ. Since every j ∈ Y has leakage ε, we have minj∈A ℓ(X →
j) = ε. Hence, we get the lower bound

εc(δ) ≥ ε̄Y (δ) = max
E⊂Y

PY (E)≥δ

min
j∈E

ℓ(X → j)

≥ min
j∈A

ℓ(X → j) = ε.

Combining this with the upper bound establishes the claim.

B. Randomized Response Mechanism

Given an integer k ≥ 2, let X = Y = [k]. The k-randomized
response (k-RR) mechanism with parameter εr > 0 is defined
as

PY |X=i(j) =

{
eεr

eεr+k−1 , j = i,

1
eεr+k−1 , j ̸= i,

i, j ∈ [k]. (14)

The k-RR mechanism satisfies εr-LDP. For simplicity, let

α :=
eεr

eεr + k − 1
,

β :=
1

eεr + k − 1
,

pi := PX(i), i ∈ [k],

qj := PY (j), j ∈ [k],

and observe that qi = β+(α−β)pi for all i ∈ [k]. Furthermore,
each outcome of the mechanism has the PML

ℓ(X → j) = log
α

qj
, j ∈ [k].

For simplicity, let us assume that p1 ≤ p2 ≤ · · · ≤ pk, which
implies that q1 ≤ q2 ≤ · · · ≤ qk and ℓ(X → 1) ≥ ℓ(X →
2) ≥ · · · ≥ ℓ(X → k).

Theorem 5. Let PX be a distribution on X = [k] and let
PY |X be the k-RR mechanism. The PML envelope satisfies
the following:

(i) If δ ∈ (0, q1], then εc(δ) = log α
q1

.
(ii) For δ ∈ (q1, 1), the PML envelope admits the upper

bound

εc(δ) ≤ min

{
log

kα

δ
, log

α

q1

}
.

(iii) For δ ∈ (q1, 1), let N ∈ {2, . . . , k} be the unique
index such that

∑N−1
j=1 qj < δ ≤ ∑N

j=1 qj . Let θ :=
δ−

∑N−1
j=1 qj

qN
∈ (0, 1], and suppose the prior satisfies

pN ≤
α
∑N−1

j=1 pj + β

(N − 2)α+ β
.

Then, the PML envelope admits the lower bound

εc(δ) ≥ hδ(θ),
where

hδ(θ) =


ℓ(X → N − 1) if 0 < θ ≤ θ1,
log (N−1)α+θβ

δ if θ1 < θ ≤ θ2,
ℓ(X → N) if θ2 < θ ≤ 1,

and

θ1 =
α
(
(N − 2)qN−1 −

∑N−2
j=1 qj

)
αqN − βqN−1

,

θ2 =
α
(
(N − 1)qN −

∑N−1
j=1 qj

)
qN (α− β) .

Proof:
(i) The k-RR mechanism satisfies log α

q1
-PML, so we have

the general upper bound εc(δ) ≤ log α
q1

which holds for
all δ ∈ (0, 1). Suppose δ ∈ (0, q1], and let A = {1}
which satisfies PY (A) = q1. Then, we have

εc(δ) ≥ ε̄Y (δ) = max
E⊂Y

PY (E)≥δ

min
j∈E

ℓ(X → j)

≥ min
j∈A

ℓ(X → j) = log
α

q1
.

(ii) We use Theorem 3 and calculate the maximal leakage
of the k-RR mechanism:

L(X → Y ) = log
∑
j∈[k]

max
i∈[k]

PY |X=i(j) = log(kα).



This yields the upper bound

εc(δ) ≤ L(X → Y ) + log
1

δ
= log

kα

δ
.

(iii) To prove the lower bounds, we construct two post-
processings of Y , denoted by W and Z, and pick the
one providing the tighter bound.
Given N and θ, let PW |Y be a channel with output
alphabet W = [N + 1] expressed as

PW |Y=j(w) =


1, if j ∈ [N − 1] and w = j,

θ, if j = w = N,

1, if j > N and w = N + 1,

0, otherwise.

Consider the subset A = [N ] of outcomes of W and
observe that

PW (A) =
N∑

w=1

PW (w) =

N−1∑
w=1

qw + θqN = δ.

In addition, each w ∈ A has PML

ℓPXW
(X → w) = log

max
x

PW |X(w | x)
PZ(w)

= log
α

qw
.

Thus, using W , we obtain the lower bound

εc(δ) = ε̄W (δ) ≥ min
w∈A

ℓPXW
(X → w) = log

α

qN
.

Next, we define a post-processing channel PZ|Y with
the output alphabet Z = [N ]. Let η = (η1, . . . , ηN ) be
a tuple satisfying

ηz ≥ 0, for all z ∈ [N ],
N−1∑
z=1

ηz = θ, (15)

N∑
z=1

ηz = 1,

and let

PZ|Y=j(z) =


1, if j ∈ [N − 1] and z = j,

ηz, if j = N and z ∈ [N ],

1, if j > N and z = N,

0, otherwise.

In words, each k-RR outcome j ∈ [N − 1] is determin-
istically mapped to z ∈ [N − 1], all j > N are mapped
to a single catch-all symbol z = N , and j = N is split
across z = 1, . . . , N with weights η1, . . . , ηN .
Consider the event B = [N − 1] of outcomes of Z, and
note that by construction, we have

PZ(B) =
N−1∑
z=1

PZ(z)

=

N−1∑
z=1

qz + ηzqN

=

N−1∑
z=1

qz + θqN = δ.

Thus, we may use the set B to obtain lower bounds on
the PML envelope:

εc(δ) = ε̄Z(δ) ≥ min
z∈B

ℓPXZ
(X → z).

Our goal is to optimize the weights {ηi}Ni=1 in order
to obtain the tightest possible lower bound. Note that
if N = 2, then (15) forces η1 = θ, so PZ|Y is fully
specified. Therefore, for the rest of the proof assume
that N > 2.
We begin by calculating the PML for symbols in the set
B. For each i ∈ [N−1], using the structure of the k-RR
mechanism and PZ|Y , we observe that

max
x

PZ|X(i | x) = PZ|X(i | i) = α+ ηiβ,

PZ(i) = qi + ηiqN .

Hence, the PML is

ℓPXZ
(X → i) = log

max
x

PZ|X(i | x)
PZ(i)

= log
α+ ηiβ

qi + ηiqN
,

Let

Mi(ηi) :=
α+ ηiβ

qi + ηiqN
, i = 1, . . . , N − 1,

and consider the optimization problem:

max
η1,...,ηN−1

min
i∈[N−1]

Mi(ηi),

subject to
N−1∑
i=1

ηi = θ,

ηi ≥ 0, i = 1, . . . , N − 1.

It is easy to verify that M ′′i (ηi) ≥ 0, so Mi is convex.
Thus, the above optimization problem is not a convex
one (since the minimum of a collection of convex
functions need not be convex). Nevertheless, we can
solve it by inspection.
First regime. Let us start by noting that M ′i(ηi) < 0
for ηi ≥ 0, implying that Mi(ηi) ≤ Mi(0) =

α
qi

for all
i ∈ [N−1]. This yields the upper bound on the objective

max
η1,...,ηN−1≥0

min
i∈[N−1]

Mi(ηi) ≤ min
i∈[N−1]

α

qi
=

α

qN−1
,

(16)
since q1 ≤ · · · ≤ qk. This bound is achievable at θ = 0
since η1 = · · · = ηN−1 = 0 is feasible at this point.2

Next, we argue that there exists θ1 ≥ 0 such that the
upper bound in (16) is achievable for θ ∈ (0, θ1]. This is
because in order to achieve α

qN−1
, all we really need is to

2Technically, we assume that θ > 0, but we may consider the limiting
value of the objective as θ ↓ 0 since the Mi’s are continuous.



have ηN−1 = 0 and Mi(ηi) ≥ α
qN−1

for i = 1, . . . , N −
2.
Let η∗i be such that Mi(η

∗
i ) =

α
qN−1

, that is,

Mi(η
∗
i ) =

α+ η∗i β

qi + η∗i qN
=

α

qN−1
⇐⇒

η∗i =
α(qN−1 − qi)
αqN − βqN−1

≥ 0, i = 1, . . . , N − 2,

and also η∗N−1 = 0. This choice of the parameters yields

θ1 =

N−1∑
i=1

η∗i =
α
(
(N − 2)qN−1 −

∑N−2
i=1 qi

)
αqN − βqN−1

.

Therefore, assuming that θ1 > 0, for θ ∈
(0,min{θ1, 1}], we have the first piece of the lower
bound

εc(δ) ≥ min
z∈A

ℓPXZ
(X → z)

= min
i∈[N−1]

logMi(η
∗
i ) = log

α

qN−1
.

Note that in this regime, we use the lower bound
obtained from Z and not W , since α

qN−1
≥ α

qN
.

Second regime. Next, suppose θ1 < 1 and θ > θ1. In
the second regime, we are forced to increase at least
one ηi beyond η∗i , so the objective falls below α

qN−1
.

Let {η̃i} denote the optimal parameters. There exists a
common threshold τ ∈ [ α+β

q1+qN
, α
qN−1

] such that

Mi(η̃i) =
α+ η̃iβ

qi + η̃iqN
= τ ⇐⇒ η̃i(τ) =

α− τqi
τqN − β

> 0,

for i = 1, . . . , N − 1.3 Hence, θ can be expressed as

θ(τ) =

N−1∑
i=1

η̃i(τ) =
(N − 1)α− τ∑N−1

i=1 qi
τqN − β

.

Solving for τ gives

τ(θ) =
(N − 1)α+ θβ∑N−1

i=1 qi + θqN
=

(N − 1)α+ θβ

δ
, θ > θ1.

Therefore, for θ ∈ (θ1, θ2] (with θ2 specified below), we
get the middle piece of the lower bound

εc(δ) ≥ min
i∈[N−1]

logMi(η̃i) = log
(N − 1)α+ θβ

δ
.

(17)
Third regime. The point θ2 is the value where any
further increase in θ would make the lower bound in (17)
drop below the lower bound obtained from W , i.e.,

τ(θ2) =
α

qN
⇐⇒ θ2 =

α
(
(N − 1)qN −

∑N−1
i=1 qi

)
qN (α− β) .

3Note that each Mi is continuous and strictly decreasing. Therefore, if
Mi(ηi) > Mj(ηj), then there exists ζ > 0 such that Mj(ηj) < Mj(ηj −
ζ) = Mi(ηi + ζ). Thus, the optimal parameters must yield a common value
for all Mi’s.

Thus, in the third regime θ ∈ (θ2, 1] we have

εc(δ) ≥ ε̄W (δ) ≥ log
α

qN
.

Finally, we find the condition on the prior distribution
ensuring that θ2 ≤ 1. Two conditions need to be satisfied
for this: We require θ1 ≤ 1 (ensuring that we enter the
second regime) and also τ(1) ≤ α

qN
(ensuring that we

enter the third regime). By using qi = β+(α−β)pi, and
after some algebra, we obtain the following conditions:

pN−1 ≤
α
∑N

i=1 pi + β

(N − 1)α+ β
, (18)

pN ≤
α
∑N−1

i=1 pi + β

(N − 2)α+ β
. (19)

Observe that (19) can be written in the form

(N − 2)α+ β ≤ α
∑N−1

i=1 pi + β

pN
,

which implies that

α
∑N

i=1 pi + β

(N − 1)α+ β
≥ α

∑N
i=1 pi + β

α+
α
∑N−1

i=1 pi+β

pN

= pN ≥ pN−1,

so if (19) is satisfied, (18) is also automatically satisfied.

The lower bounds in Theorem 5 are stated under the
assumption that 0 < θ1 < θ2. The following degenerate cases
are handled by interpreting the piecewise definition in the
natural way: (i) If N = 2 or q1 = · · · = qN−1, then θ1 = 0,
so the first regime is vacuous and omitted; (ii) If qN−1 = qN ,
then θ1 = θ2, so the second regime is vacuous and omitted.
In this case, the bound equals ℓ(X → N − 1) = ℓ(X → N)
for all θ ∈ (0, 1].

To simplify the prior distribution on larger alphabets, we use
the following four-level construction obtained by partitioning
the alphabet into four blocks of equal size (assuming k is
divisible by 4). Fix ρ ∈ (0, 1/3) and define

m0 = 1− 3ρ, m1 = 1− ρ, m2 = 1 + ρ, m3 = 1 + 3ρ.

For r ∈ {0, 1, 2, 3}, set

pi =
mr

k
, i ∈ {k

4
r + 1, . . . ,

k

4
(r + 1)}.

Then, PX is constant on each block and satisfies
∑k

i=1 pi = 1.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated relaxations of ε-PML and their
compatibility with post-processing. We showed that ADP-
inspired candidates cannot simultaneously upper bound the
failure probability and remain post-processing safe. This led
us to introduce the PML envelope, which closes the failure
probability over all downstream transformations; so it is post-
processing robust by construction.

Beyond its definition, we characterized the PML envelope
using the quantiles of the information leakage random variable,
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(a) k = 3 and PX uniform.
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(b) k = 5 and PX = (0.1, 0.1, 0.2, 0.3, 0.3).

0.0 0.2 0.4 0.6 0.8 1.0

δ

0.0

0.2

0.4

0.6

0.8

1.0

P
ri

va
cy

pa
ra

m
et

er
ε

Upper bound on εc(δ)

Lower bound on εc(δ)

(ε, δ)-LDP

(c) k = 12 and PX is the four-level prior with ρ = 0.1.
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(d) k = 20 and PX is the four-level prior with ρ = 0.1.

Fig. 2: The PML envelope and (ε, δ)-LDP guarantees for the k-RR mechanism with εr = 1.0. Each sub-figure plots upper
and lower bounds on εc(δ), together with the corresponding (ε, δ)-LDP curve for different alphabet sizes k and priors PX .

established basic structural properties such as continuity, and
derived general upper and lower bounds. Our analysis of the
PML-extremal mechanisms and randomized response illus-
trates how the PML envelope behaves for two mechanisms that
play a central role in the privacy literature. Overall, our work
establishes the PML envelope as a natural and operationally
meaningful privacy definition for providing guarantees that are
preserved under arbitrary downstream transformations.

The present work focused on settings in which both the
secret and the observable outcomes take values in finite
probability spaces. This assumption provides a simple and
mathematically convenient environment for developing the
theory. In these settings, due to (6), the joint distribution PXY

always satisfies ε-PML for some finite ε. The full force of the
PML envelope, however, emerges in infinite settings, where
such uniform bounds may not exist. Consequently, an impor-
tant direction for future work is to study the envelope in more
general contexts, in particular, the Gaussian mechanism, which
is arguably the most commonly used mechanism both in terms
of theoretical developments and in practical implementations.

Another direction concerns the behavior of εc under compo-
sition. Establishing sequential or adaptive composition bounds
for the PML envelope would be essential for its use in complex
systems and remains an important topic for future work.
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APPENDIX A
MEASURING THE INFORMATION LEAKED TO EVENTS

Given an event E ⊆ Y with PY (E) > 0 and a random
variable Z = 1E(Y ), we define

ℓPXY
(X → E) := ℓPXZ

(X → 1).

This definition is motivated by the observation that both de-
terministic and randomized post-processings can be naturally
expressed in terms of indicator functions. For deterministic
mappings, this is immediate: If Z = h(Y ) and z ∈ Z , then

ℓPXZ
(X → z) = ℓPXY

(X → Ez),
where Ez = {y ∈ Y : h(y) = z} denotes the pre-image of z
under h.

We can also cast randomized mappings as deterministic ones
by adopting a few formalisms from [23] and [7]. Given a
privacy mechanism PY |X , we say that two outcomes y, y′

are similar if there exists a constant c > 0 such that
PY |X=x(y) = cPY |X=x(y

′) for all x ∈ X . Similar outcomes
have the same information density i(x; y) = i(x; y′) for all
x ∈ X , and induce the same posterior distributions PX|Y=y =
PX|Y=y′ . Consequently, “merging” similar outcomes (i.e.,
mapping similar outcomes to the same symbol) does not
alter the distribution of ℓ(X → Y ). In [23], the mechanism
obtained by merging all similar outcomes is called the reduced
mechanism. As an example, for the mechanism PY |X in (7),
outcomes 3 and 4 are similar, and its reduced form is

PYr|X =


0 0 1

0 0 1

0 0.2 0.8

0.2 0 0.8

 .
Next, we define an equivalence relation that unifies all

mechanisms with the same reduced form. Let [PY |X ] denote
the equivalence class of PY |X . A key advantage of introducing
such equivalence classes is that a randomized post-processing
applied to the outputs of PY |X can alternatively be viewed
as a deterministic post-processing applied to some mechanism
in [PY |X ]. While this idea can be established formally, we
illustrate it with a simple example that readily extends to a
general proof. Fix a mechanism PY |X with binary output al-
phabet Y = {0, 1}, and consider a randomized post-processing
PZ|Y of the form

PZ|Y =

[
α 1− α

1− β β

]
,

with 0 < α, β < 1. Define a mechanism PỸ |X with the output
space Ỹ = {00, 01, 10, 11} by

PỸ |X=x(00) = αPY |X=x(0),

PỸ |X=x(01) = (1− α)PY |X=x(0),

PỸ |X=x(10) = (1− β)PY |X=x(1),

PỸ |X=x(11) = βPY |X=x(1),

for all x. Then, PY |X and PỸ |X belong to the same equiva-
lence class, and we have

ℓPXZ
(X → 0) = ℓPXỸ

(X → {00, 10}),
ℓPXZ

(X → 1) = ℓPXỸ
(X → {01, 11}),

that is, Z is a deterministic function of Ỹ . Extending this
construction to general post-processings shows that any ran-
domized post-processing of Y can be treated as a deterministic
mapping applied to some mechanism in the equivalence class
[PY |X ].

Below, we establish some elementary properties of the map
E 7→ ℓPXY

(X → E). As a preliminary step, let us express
ℓPXY

(X → E) in terms of the information density:

ℓPXY
(X → E) = log max

x∈X

PY |X=x(E)
PY (E)

= log max
x∈X

∑
y∈E PY |X=x(y)

PY (E)

= log max
x∈X

∑
y∈E exp

(
i(x; y)

)
PY (y)

PY (E)
= log max

x∈X
EY∼QE

[
exp

(
i(x;Y )

)]
, (20)

where QE is the conditional distribution of Y given E , that is,

QE(y) =


PY (y)
PY (E) if y ∈ E ,

0 otherwise.

Lemma 1. The function ℓ(X → E) satisfies the following
properties:

(i) 0 ≤ ℓ(X → E) ≤ log 1
PY (E) for all E ⊆ Y .

(ii) ℓ(X → Y) = 0.
(iii) If E ∩ E ′ = ∅, then

ℓ(X → E ∪ E ′) ≤ max
{
ℓ(X → E), ℓ(X → E ′)

}
.

(iv) Suppose PY (E) = θ > 0. For each 0 < θ′ < θ, there
exists an event E ′ ⊂ E with probability PY (E ′) = θ′

such that
ℓ(X → E ′) ≥ ℓ(X → E).

Proof:
(i) These bounds follow immediately from the definition of

ℓ(X → E) and were also noted in [7].
(ii)

ℓPXY
(X → Y) = logmax

x∈X

PY |X=x(Y)
PY (Y)

= log
1

1
= 0.

(iii) Suppose E ∩ E ′ = ∅. We have

ℓ(X → E ∪ E ′) = log max
x

PY |X=x(E ∪ E ′)
PY (E ∪ E ′)

= log max
x

PY |X=x(E) + PY |X=x(E ′)
PY (E) + PY (E ′)

≤ log max
x

max
{PY |X=x(E)

PY (E)
,
PY |X=x(E ′)
PY (E ′)

}



= max
{
ℓ(X → E), ℓ(X → E ′)

}
.

(iv) Fix x ∈ X satisfying

log
PY |X=x(E)
PY (E)

≥ ℓ(X → E).

Choose τ > 0 so that

PY {y ∈ E : exp
(
i(x; y)

)
> τ} ≤ θ′

≤ PY {y ∈ E : exp
(
i(x; y)

)
≥ τ}.

Let A = {y ∈ E : exp
(
i(x; y)

)
> τ}. If PY (A) < θ′,

choose a set B ⊆ {y ∈ E : exp
(
i(x; y)

)
= τ} so

that PY (A) + PY (B) = θ′ and let E ′ = A ∪ B.4 If
PY (A) = θ′, then let E ′ = A. By construction, we have

exp
(
i(x; y)

)
≥ τ, y ∈ E ′,

exp
(
i(x; y)

)
≤ τ, y ∈ E \ E ′.

Now, we can write

ℓ(X → E) ≤ log
PY |X=x(E)
PY (E)

= log
PY |X=x(E ′) + PY |X=x(E \ E ′)

PY (E ′) + PY (E \ E ′)

≤ log max
{PY |X=x(E ′)

PY (E ′)
,
PY |X=x(E \ E ′)
PY (E \ E ′)

}
= log

PY |X=x(E ′)
PY (E ′)

(21a)

≤ ℓ(X → E ′),
where (21a) follows because

PY |X=x(E ′)
PY (E ′)

= EY∼QE′

[
exp

(
i(x;Y )

)]
≥ τ,

PY |X=x(E \ E ′)
PY (E \ E ′)

= EY∼QE\E′

[
exp

(
i(x;Y )

)]
≤ τ.

We make some further remarks about the event-wise leak-
age. First, in general, the reverse of Lemma 1(iii) need not
hold, i.e., one cannot claim that ℓ(X → E ∪E ′) upper bounds
min

{
ℓ(X → E), ℓ(X → E ′)

}
.

Example 4. Let X be an unbiased Bernoulli random variable,
and let Y = {1, 2, 3}. Consider the mechanism

PY |X =

[
0.9 0 0.1
0 0.9 0.1

]
,

which induces the marginal distribution PY with

PY (1) = 0.45, PY (2) = 0.45, PY (3) = 0.1.

Let E = {1} and E ′ = {2}. Then, we have

ℓ(X → E) = ℓ(X → E ′)

= log max
x∈{0,1}

PY |X=x({1})
PY ({1})

4To select such B, we might need to use some other mechanism in [PY |X ].

= log
0.9

0.45
= log 2.

However, for their union E ∪ E ′ = {1, 2} we have

ℓ(X → E ∪ E ′) = log max
x∈{0,1}

PY |X=x({1, 2})
PY ({1, 2})

= log 1 = 0.

Thus, ℓ(X → E ∪ E ′) = 0 < min{ℓ(X → E), ℓ(X → E ′)} =
log 2.

Second, the event-wise leakage is, in general, not monotone.
That is, given events E ⊂ E ′, either ℓ(X → E) or ℓ(X → E ′)
can be larger.

Example 5. Recall the setup of Example 4. Let E = {3} and
E ′ = {1, 3}, so that E ⊂ E ′. Then, we have

ℓ(X → E) = logmax
x

PY |X=x({3})
PY ({3})

= log
0.1

0.1
= 0,

whereas

ℓ(X → E ′) = logmax
x

PY |X=x({1, 3})
PY ({1, 3})

= log
1

0.55
> 0.

Now, let F = {1} and F ′ = {1, 3}, so that F ⊂ F ′. We
have

ℓ(X → F) = log 2,

while, as computed above,

ℓ(X → F ′) = log

(
1

0.55

)
< log 2.

A. Connection to Prior Work and Derivation of Algorithm 1

Our definition of the event-wise leakage, as well as the
procedure in Algorithm 1 are closely related to a privacy
guarantee studied in [7]. In particular, Saeidian et al. [7]
introduced a guarantee based on the worst-case PML of post-
processed outcomes with probability at least δ, namely the
quantity

sup
Z:X−Y−Z

max
z∈Z:PZ(z)≥δ

ℓPXZ
(X → z). (22)

Then, they showed that (22) admits an equivalent formulation
in terms of the worst-case information leaked to events E ⊆ Y
with probability PY (E) ≥ δ [7, Thm. 3]. It follows immedi-
ately from this equivalence (and the connection between events
and indicator functions discussed above) that the quantity
in (22) coincides with the binary PML envelope εb defined
in (13).

Saeidian et al. [7] also characterized the solution to (22). Fix
x ∈ X and order the outputs y ∈ Y in decreasing information
density i(x; y). Let Fk denote the set consisting of the first k
outputs in this ordering, and let k⋆ be the smallest index such
that PY (Fk⋆) ≥ δ. If PY (Fk⋆) > δ, the optimal construction
uses randomization at the boundary output so that the selected
event has probability exactly δ. For each x ∈ X , this yields
the value

κ(x) =
1

δ

(
PY |X=x(Fk⋆−1) + ζ PY |X=x(yk⋆)

)
, (23)



where ζ ∈ (0, 1] is chosen so that PY (Fk⋆−1)+ζPY (yk⋆) = δ.
Finally, the binary envelope is obtained as

εb(δ) = log max
x∈X

κ(x).

Algorithm 1 formalizes this procedure.

APPENDIX B
EQUIVALENCE OF (9) AND (10)

Lemma 2. For all δ ∈ (0, 1), it holds that

inf{t ≥ 0 : CZ(t) ≥ 1− δ} = min
A⊂Z

PZ(A)≥1−δ

max
z∈A

ℓ(z).

Proof: Let

r1 := min
A⊂Z

PZ(A)≥1−δ

max
z∈A

ℓ(z),

r2 := inf{t ≥ 0 : PZ{z : ℓ(z) ≤ t} ≥ 1− δ}.

Given r ≥ 0, let Jr =
{
z : ℓ(z) ≤ r

}
, and note that

maxz∈Jr ℓ(z) = r. By definition, if r < r2, then PZ(Jr) <
1− δ, therefore PZ(Jr) ≥ 1− δ for all r ≥ r2. Therefore, we
have

r1 = min
A⊂Z

PZ(A)≥1−δ

max
z∈A

ℓ(z)

≤ inf
Jr:r≥r2

max
z∈Jr

ℓ(z)

≤ inf
r≥r2

r = r2.

Next, we argue that the strict inequality r1 < r2 would lead
to a contradiction. To see this, suppose r1 < r2. This means
that there exists a set E ⊂ Z with PZ(E) ≥ 1 − δ such that
r1 ≤ r3 = maxz∈E ℓ(z) < r2. On the other hand, note that

E ⊆
{
z : ℓ(z) ≤ r3

}
,

therefore,

PZ

{
z : ℓ(z) ≤ r3

}
≥ PZ(E) ≥ 1− δ.

Hence,

r2 = inf{t ≥ 0 : PZ{z : ℓ(z) ≤ t} ≥ 1− δ} ≤ r3,

which is a contradiction. We conclude that r1 = r2.

APPENDIX C
PROOF OF THEOREM 2

It is well-known that the right-continuous quantile function
upper bounds the left-continuous quantile function. Neverthe-
less, we include a proof for completeness. Fix some random
variable Z with PML ℓ(Z), and δ ∈ (0, 1). Let 0 ≤ α < εZ(δ)
and consider the set

Bα = {z ∈ Z : ℓ(z) ≥ α}.

Then, PZ(Bα) > δ,5 and we get

ε̄Z(δ) = max
A⊂Z:

PZ(A)≥δ

min
z∈A

ℓ(z) ≥ min
z∈Bα

ℓ(z) ≥ α.

Letting α→ εZ(δ) yields

ε̄Z(δ) ≥ εZ(δ).
Next, we prove the opposite inequality, i.e.,

sup
Z:X−Y−Z

εZ(δ) ≥ sup
Z:X−Y−Z

ε̄Z(δ).

Fix δ ∈ (0, 1) and suppose

c = εY (δ) < ε̄Y (δ) = c̄,

where c̄, c > 0. This happens if and only if there exists a subset
B ⊂ Y with probability PY (B) = δ and miny∈B ℓ(y) = c̄
and G = Y \ B and maxy∈G ℓ(y) = c. Therefore, there exist
outcomes y1 ∈ B, y2 ∈ G such that

ℓ(X → y1) ≥ c̄,
ℓ(X → y2) ≤ c.

(24)

Fix a parameter η ∈ (0, 1) and let B ∼ Bernoulli(η) be
independent of (X,Y ). Define Z = hη(Y,B) where

hη(Y,B) =


⊥, if Y = y1,

⊥, if Y = y2 and B = 1,

⋄, if Y = y2 and B = 0,

Y, otherwise.

Note that Z is a randomized function of Y since it also
depends on B. Now, observe that

PZ(⊥) = PY (y1) + ηPY (y2),

PZ|X=x(⊥) = PY |X=x(y1) + ηPY |X=x(y2).

Then, for fixed x we have

PZ|X=x(⊥)
PZ(⊥)

=
PY |X=x(y1) + ηPY |X=x(y2)

PY (y1) + ηPY (y2)

=

PY |X=x(y1)

PY (y1)
+ η

(
PY |X=x(y2)

PY (y2)

)(
PY (y2)
PY (y1)

)
1 + η PY (y2)

PY (y1)

=

(
PY |X=x(y1)

PY (y1)
+ η

(
PY |X=x(y2)

PY (y2)

)
·
(
PY (y2)

PY (y1)

))
·(

1− η
(
PY (y2)

PY (y1)

)
+O(η2)

)
=
PY |X=x(y1)

PY (y1)
− η

(
PY (y2)

PY (y1)

)
·(

PY |X=x(y1)

PY (y1)
− PY |X=x(y2)

PY (y2)

)
+O(η2).

5This can be shown by contradiction: If PZ(Bα) ≤ δ, then the set Bc
α =

Z\Bα has probability PZ(Bc
α) ≥ 1−δ and also satisfies maxz∈Bc

α
ℓ(z) ≤

α < εZ(δ). This contradicts the definition of εZ(δ) as the smallest upper
bound on the PML of all sets with probability at least 1− δ.



Taking the logarithm and maximum over x ∈ X on both sides
gives

ℓPXZ
(X → ⊥) = log max

x

PZ|X=x(⊥)
PZ(⊥)

= log max
x

(
PY |X=x(y1)

PY (y1)
− η

(
PY (y2)

PY (y1)

)
·

(
PY |X=x(y1)

PY (y1)
− PY |X=x(y2)

PY (y2)

)
+O(η2)

)

≥ log

(
max

x

PY |X=x(y1)

PY (y1)
− η

(
PY (y2)

PY (y1)

)
·

max
x′

(
PY |X=x′(y1)

PY (y1)
− PY |X=x′(y2)

PY (y2)

)
+O(η2)

)
,

≥ log
(
ec̄ − ηβ +O(η2)

)
= c̄+ log

(
1− ηβe−c̄ +O(η2)

)
, (25)

where

β =

(
PY (y2)

PY (y1)

)
max
x′

(
PY |X=x′(y1)

PY (y1)
− PY |X=x′(y2)

PY (y2)

)
.

Note that β > 0 because

max
x′

(
PY |X=x′(y1)

PY (y1)
− PY |X=x′(y2)

PY (y2)

)
≥ max

x′

PY |X=x′(y1)

PY (y1)
−max

x

PY |X=x(y2)

PY (y2)

≥ exp(c̄)− exp(c) > 0.

Now, using the elementary bound log(1 − t) ≥ −t − t2 for
0 < t < 1

2 in (25) yields

ℓPXZ
(X → ⊥) ≥ c̄− ηβe−c̄ +O(η2) = c̄− ηγ +O(η2),

with γ = βe−c̄. Thus, by taking η → 0, we can bring
ℓPXZ

(X → ⊥) arbitrarily close to c̄.
The final step is to argue that εZ(δ) ≥ c̄. To show this, let

B′ = B \ {y1} and G′ = G \ {y2} so that the alphabet of Z
can be represented by Z = B′ ∪ G′ ∪ {⊥, ⋄}. Let A be an
arbitrary subset of Z with probability PZ(A) ≥ 1− δ. Since
PZ(G′ ∪ {⋄}) = PY (G) − ηPY (y2) < 1 − δ, any such set A
either intersects with B′ or contains ⊥. If A contains elements
from B′, then

max
z∈A

ℓPXZ
(X → z) ≥ min

z∈B′
ℓPXZ

(X → z) ≥ c̄,

and if ⊥ ∈ A, then

max
z∈A

ℓPXZ
(X → z) ≥ ℓPXZ

(X → ⊥) ≥ c̄− ηγ +O(η2),

and taking η → 0 yields maxz∈A ℓPXZ
(X → z) ≥ c̄. Hence,

we have proved that

εZ(δ) = min
A:PZ(A)≥1−δ

max
z∈A

ℓ(X → z) ≥ c̄ = ε̄Y (δ).

This, in turn, implies that

sup
Z:X−Y−Z

εZ(δ) ≥ sup
Z:X−Y−Z

ε̄Z(δ),

as desired.
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